
www.manaraa.com

I 
 

 

 

 

 

 

 

 

Semantic Word Clustering from Large Arabic Text  

 العنقدة الدلالية لكلمات النص العربي الكبير
 

By 

Tareq Issa Abufayad 

 

 

Supervised by 

Dr. Eng. Rebhi S. Baraka 

Associate Professor of Computer Science 

A thesis submitted in partial fulfilment  

of the requirements for the degree of  

Master of Information Technology 

 

June / 2018 

 ــزةــــغبالجـامعــــــــــة الإســـــلاميــة 

 البحث العلمي والدراسات العليا عمادة

 ماتـــــــــــة تكنولوجيا المعلوـليـــــــك

 ماجستير تكــــنولوجيا المــــعلومـــات

 

 ماجستيـــــــر تكنولوجيا المعاومات

The Islamic University of Gaza 

Deanship of Research and Postgraduate  

Faculty of Information Technology 

Master of Information Technology  



www.manaraa.com

II 
 

 

 إقــــــــــــــرار
 

 أنا الموقع أدناه مقدم الرسالة التي تحمل العنوان:

Semantic Word Clustering from Large Arabic Text 

 العنقدة الدلالية لكلمات النص العربي الكبير

هذه الرسالة  أقر بأن ما اشتملت عليه هذه الرسالة إنما هو نتاج جهدي الخاص، باستثناء ما تمت الإشارة إليه حيثما ورد، وأن

خرى.علمي أو بحثي لدى أي مؤسسة تعليمية أو بحثية أ لنيل درجة أو لقب الاخرين ككل أو أي جزء منها لم يقدم من قبل  

Declaration 

I understand the nature of plagiarism, and I am aware of the University’s policy on this. 

The work provided in this thesis, unless otherwise referenced, is the researcher's own work, and 

has not been submitted by others elsewhere for any other degree or qualification. 

 

 

 

 :Student's name طارق عيسى أبو فياض اسم الطالب:

 :Signature طارق عيسى أبو فياض التوقيع:

 06/06/2018 التاريخ:
Date: 

 



www.manaraa.com

III 
 

 



www.manaraa.com



www.manaraa.com

IV 
 

Abstract 

 

With the rapid increase of text volume on the web, textual data becomes high-dimensional 

(thousands of thousands of words in each domain) and carry semantic information. This 

raise the need for word clustering techniques that can cluster words into meaningful 

groups based on their similarity, which can be used in various information retrieval tasks, 

like question answering systems, search engines, classification algorithms and search 

query expansion. In this thesis, we use word2vec model to build Arabic vector 

representations of words that brings extra semantic features to help building clusters of 

semantically related words. This involves text pre-processing, creating word vectors using 

word2vec model, generating the classification model and creating word clusters using 

Pipeline method and Extra tree classifier. We have taken the transformed text, the term 

frequency matrix and learn to classify the vectors with Extra Tree classifier, then we 

classifying and predicting the training data into the pre-defined categories. We have 

implemented the model and performed a set of experiments. The experiments results show 

the effectiveness of the model to create word clusters from a large plain Arabic text. The 

classification results show that the extracted features from the word vectors have 

empowered the classification models and achieved accuracy, precision, recall and F-

measure with higher than 85%. The results also indicate that the classification model is 

not being under fitting (i.e., the model does not perform poorly on the training data) and 

it is also not being over fitting (i.e., the model performs well on both; the training data and 

the testing data).  

 

Keywords: Semantic relation, Arabic Word clustering, Word2vec model, Wikipedia, 

Ontology 

  



www.manaraa.com

V 
 

 الملخص

لاف من االاف انات النصية عالية الأبعاد ) الاا البي في حجم النص على الويب حيث أصبحت مع الزيادة السريعة
جمع أن ت هاتقنيات تجميع الكلمات التي يمكن إلىالكلمات في كل مجال( وتحمل معلومات دلا لية. هذة الزيادة تطلبت 

في العديد من مهام أسترجاع  علي أساس تشابهها، والتي يمكن أستخدامهاو مجموعات ذات معني  إليالكلمات 
و أفي هذة الرسالة نقترح أستخدام أداة التصنيف وتوسيع أستعلام البحث.  محركات البحث وخورازمياتفي  المعلومات

 والتي سوف تعطي معاني ومميزات دلالية الكبير "  لبناء المتجة التمثيلي لكلمات النص العربيword2vecنموذج "
وهذا يتضمن المعالجة المسبقة للنص، بناء . الكبير ات دلالية من كلمات النص العربيللمساعدة في بناء مجموع
ستخدام طريقة إ، بناء نموذج التصنيف والمجموعات الدلالية ب"word2vec" نموذج المتجة التمثيلي بأستخدام

"Pipeline" وخورازمية التصنيف "Extra tree classifier."  مصفوفة تردد معالجتة و تم قمنا بأخذ النص الذي تم
تصنيف وأستخدامة في  ""Extra tree classifierخورازمية التصنيف "ستخدام إب المتجهاتات لبناء مصنف المصطلح

حيث  النموذج، بإستخدام جراء تجارب عديدةوإ بتطبيق نموذج التصنيف قمنا الفئات المحددة مسبقا. إليوتنبؤ الكلمات 
لي إوتظهر نتائج التصنيف فعالية النموذج لإنشاء مجموعات دلالية من النص العربي الكبير.  إلى أظهرتأن النتائج 

من  بأكثروصحة  عالية من تحقيق دقة نموذج التصنيفأن السمات المستخرجة من كلمات المتجهات قد مكنت 
) أى أن النموذج لايؤدي  "under fittingحالة " إليأن نموذج التصنيف لايخضع  %. كما أن النتائج تشير إلي85

 ا  جيد "  ) أى أن النموذج يؤدي أداء  over fittingحالة " إليبيانات التدريب(،  وأيضا لايخضع  عليأداء ضعيفا 
 . (ختبارالتدريب والإ علي كل من بيانات

 

 لوجياالانتو   الويكبيديا، ، Word2vecالعربية، أداة  عنقدة الكلمات علاقات دلالية، الكلمات المفتاحية :

 

 

 

 

 

 

 

 



www.manaraa.com

VI 
 

 

 

 

  



www.manaraa.com

VII 
 

Dedication 

Praise be to Allah SWT for His blessings, which are countless, O God, make us thankful 

for your blessings.  

Thankful to Almighty Allah SWT who gave me the strength and patient to finish this 

work.  And prayers and peace be upon my great teacher and messenger, Muhammed (May 

Allah SWT bless and grant him), who taught us the purpose of life, and his family and 

companions and followers and those followed them in charity until the Day of Judgment. 

 

My dedicated also goes to 

 

My beautiful parents …...who never stop giving me their supports in all times 

 

   My dearest wife…...who lives with me moment by moment the life affairs and helps 

me through these obstacles with light of hope and support 

 

 My twin children…...Issa & Safa…...My Allah SWT blessing on me 

 

       My beloved brothers and sisters…...who stands with me all the time without boring 

and hustle. 

 

To …...those who care about me. 

 

 

 

 

 

  



www.manaraa.com

VIII 
 

Acknowledgment 

 

In the Name of Allah, the Most Merciful, the Most Compassionate all praise be to Allah, 

the Lord of the worlds; and prayers and peace be upon Mohamed His servant and 

messenger. 

 

First of all, Praise to Allah SWT for giving me the health and strength to complete this 

thesis. 

 

I am thankful for my supervisor Dr. Rebhi S. Baraka, without his help, guidance, and 

continuous follow-up; this research would never have been done. 

 

Also I would like to thanks the academic staff of the Faculty of Information Technology 

at the Islamic University-Gaza who helped me during my Master's study and taught me 

different courses. 

 

Last but not least, I am greatly grateful to my family for continued love and support. 

 

Tariq Issa Abufayad                                                                                                                                                     

June, 2018        

  

 

 

 

 

 

 

 

 

  



www.manaraa.com

IX 
 

Table of Contents 
Declaration II 

Abstract IV 

Dedication VII 

Acknowledgment .................................................................................................................. VIII 

List of Tables ........................................................................................................................... XI 

List of Figures ......................................................................................................................... XII 

List of Abbreviations ............................................................................................................. XIII 

Chapter 1 Introduction ............................................................................................................. 1 

1.1 Statement of the problem ................................................................................................. 2 

1.2 Objectives ....................................................................................................................... 3 

1.3 Importance of the research ............................................................................................... 4 

1.4 Scope and limitations ...................................................................................................... 4 

1.5 Methodology ................................................................................................................... 4 

Chapter 2 Theoretical and Technical Foundation ..................................................................... 7 

2.1 The Complexity of Creating Word Clusters from Large Unstructured Arabic Text. .......... 7 

2.2 Overview of Word Clustering Techniques ....................................................................... 8 

2.3 Vector Representation of Words .....................................................................................11 

2.4 The Different Models that Create Word Vectors .............................................................11 

2.5 Software Environment, Libraries and Tools for Creating Word Clusters .........................15 

2.6 The Evaluation of Generated Word Clustering ................................................................16 

2.7 Summary ........................................................................................................................18 

Chapter 3 Related Works ........................................................................................................19 

3.1 Current Text Classification and Clustering Techniques for Large Text ............................19 

3.1.1 feature selection enhancing ..........................................................................................19 

3.1.2 External Methods and Developed Techniques ..............................................................21 

3.2 Current Researches and Approaches that Use Word Vectors in Classification and 

Clustering of Large Text ......................................................................................................22 

3.3 Other models for creating word vectors ..........................................................................25 

3.4 Summary ........................................................................................................................26 

Chapter 4 Clustering Words Semantically ...............................................................................27 

4.1 Collecting Text Data ......................................................................................................28 



www.manaraa.com

X 
 

4.2 Text Pre-Processing ........................................................................................................29 

4.3 Create Vector Representation of Words ..........................................................................30 

4.4 Building the Classification Features ................................................................................32 

4.5 Building the Classification Model ...................................................................................33 

4.6 Output ............................................................................................................................34 

4.7 Summary ........................................................................................................................36 

Chapter 5 Experimental Results and Evaluation ......................................................................37 

5.1 Experimental Design ......................................................................................................37 

5.1.2 The experiment environment. ......................................................................................38 

5.1.3 The experimental parameters .......................................................................................39 

5.1.4 The experiment procedures. .........................................................................................40 

5.2 Experimental Results and Discussion..............................................................................41 

5.4 Summary ........................................................................................................................47 

Chapter 6 Conclusion and Future Work ...................................................................................48 

6.1 Conclusion .....................................................................................................................48 

6.2 Future Works .................................................................................................................49 

The Reference List ...................................................................................................................50 

Appendix A : The Source Code .................................................................................................53 

 

 

 

 

 

 

 

 

 

 

 

  



www.manaraa.com

XI 
 

List of Tables  

 

Table (2.1): Confusion matrix illustration ................................................................................16 

Table (5.1): Wikipedia text volumes after pre-processing ........................................................38 

Table (5.2): The execution time of pre-processing tasks ...........................................................41 

Table (5.3): The execution time of creating different word vectors...........................................42 

Table (5.4): Summary of all experiments .................................................................................45 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  



www.manaraa.com

XII 
 

List of Figures  

Figure (2.1): Example of partitional clustering (slideplayer, 2018)............................................ 9 

Figure (2.2): Example of density-based clustering  (Ester, Kriegel, Sander, & Xu, 1996) .......... 9 

Figure (2.3): Example of hierarchical clustering method (Asia Pacific Forum, 2005) ...............10 

Figure (2.4): Continuous bag-of-words model (Mikolov & Dean, 2013) ..................................12 

Figure (2.5): Skip-gram model (Mikolov & Dean, 2013) .........................................................13 

Figure (4.1): Generating the word clusters (the proposed approach) .........................................27 

Figure (4.2): Sample of generated word phrases ......................................................................30 

Figure (4.3): Pre-processed sentence example .........................................................................31 

Figure (4.4): Sample of generated word clusters using w2v .....................................................31 

Figure (4.5): Sparse matrix of classification features ...............................................................32 

Figure (4.6): The pipeline data flow ........................................................................................33 

Figure (4.7): Example of generated classification results .........................................................35 

Figure (5.1): Generated word vector for word year ..................................................................40 

Figure (5.2): Experiment logs information of creating word vectors results ..............................42 

Figure (5.3): Dataset divided in 5 part .....................................................................................43 

Figure (5.4): 5 k-fold divided dataset .......................................................................................43 

Figure (5.5): Confusion matrix for 15-word testing unlabeled data ..........................................46 

Figure (A.1): The pre-processing Source Code ........................................................................53 

Figure (A.2): Creating word vectors ........................................................................................54 

Figure (A.3): Creating the classification features .....................................................................55 

Figure (A.4): Creating the classification model and word clusters............................................56 

 

 

 

 

 

 

 

 

 

 

 

 

  



www.manaraa.com

XIII 
 

List of Abbreviations 

 

CBOW Continuous Bag-of-Words 

DBSCAN Density-Based Spatial Clustering of Applications with Noise 

LSI Latent Semantic Analysis Indexing 

LSA Latent Semantic Analysis 

TF Term-Frequency  

TF-IDF Term Frequency, Inverse Document Matrix 

TP True Positive 

TN True Negative  

FP False Positive 

FN True Positive 

NLP Natural Language Processing 

SG Skip-Gram 

SVD Singular Value Decomposition 

VPS Virtual Private Server 

WV Word Vectors 

W2V Word2vec 

 

 

 

 

 

 

 

 

  



www.manaraa.com

1 
 

Chapter 1  

Introduction 

 

The field of Arabic information retrieval has recently gained considerable attention 

especially with the dependency on text mining, data mining and semantic web techniques 

(Al-Zoghby, Ahmed, & Hamza, 2013). This gain is due to the rapid increase of text 

volume on the web where the textual data becomes high-dimensional (thousands of 

thousands of words in each domain) and carry semantic information. This raise the need 

for word clustering techniques that can clusters words that are semantically related into 

meaningful groups based on their similarity (Alotaibi & Anderson, 2017). 

Traditional text classification and clustering algorithms do not consider semantic 

relationships between Arabic words leading to inaccurately construct clusters of 

semantically related words. Many researchers have used external resources to overcome 

this problem. Alkoffash (2012) has employed two clustering algorithm, k-means and k-

medoids on Arabic text to extract a feature set of keywords in order to improve the clusters 

quality. Bloehdorn, Cimiano, and Hotho (2006) have used integrated conceptual features 

extracted from ontologies to improve text clustering and classification. Hotho, Staab, and 

Stumme (2003) have used conceptual terms from WordNet to improve text clustering and 

resulting more semantically related clusters. 

Thus there is a need for semantic word clustering to create clusters of semantically related 

words. These clusters can be used in various information retrieval tasks, like question 

answering systems, search engines, classification algorithms and search query expansion 

(Baker & McCallum, 1998). 

The aim of our thesis is to build semantic word clusters from Arabic large plain text. These 

clusters can be used by the Arabic semantic applications. To the best of our knowledge, 

our thesis presents a new way to extract semantic word clusters from large Arabic plain 

text. Existing approaches like Arabic WordNet contain just concepts extracted from 

Wikipedia without considering the semantic meanings between words.  



www.manaraa.com

2 
 

We use word2vec (w2v) model (Mikolov & Dean, 2013) to build Arabic vector 

representation of words that brings extra semantic features to help building clusters of 

semantically related words. There are models for creating vector representation of words. 

The two most popular ones are word2vec and glove (Akata, Reed, Walter, Lee, & Schiele, 

2015).  

w2v is a two-layer neural network is trained to predict a set of targets words from a set of 

context words. It has two main models or architecture for the target prediction: skip-gram 

(SG) and continues bag-of-words (CBOW). In SG, the model uses the center word to 

predict the surrounding words. In CBOW, the model uses a window (number of words) 

of word to predict the middle of word. w2v is a memory friendly than glove. 

Glove is another predictive model created by Pennington, Socher, and Manning (2014). 

Glove works like w2v, except that the glove input is about matrix that holds the ratio of 

the co-occurrence probabilities of two words, while w2v takes the entire corpus as input. 

After creating the vector representation of words, we take the mean or the average of all 

vectors corresponding to individual words to construct the term frequency matrix for the 

classification process. Then, we take the transformed text (the processed text) and the term 

frequency matrix as input for Extra Trees classifier algorithm. Finally, using the 

classification model to classify and predict the testing data into their class. Next we state 

the problem of the research, the derived objectives. Then we indicate the important of this 

work followed by scope and limitation of the research. We then describe the methodology 

we follow in our research. Finally, we give the organization of the thesis. 

1.1 Statement of the problem 

As the growth of text data on the web increases, it becomes high-dimensional (thousands 

of thousands of words in each domain) and carry semantic information. Therefore, there 

is a need for word clustering techniques that can clusters words into meaningful groups 

based on their similarity. Traditional text classification and clustering algorithms do not 

consider the semantic relationships between Arabic words so they cannot accurately 

construct clusters of semantically related words. 



www.manaraa.com

3 
 

The problem of this thesis is how to build an Arabic semantic word clustering from large 

text taking into consideration the semantic relationships between words. 

1.2 Objectives 

1.2.1 Main objective 

The main objective of this research is to create groups of Arabic semantic word clusters 

from large Arabic plain text. These clusters should have high intra-cluster similarity 

(words within a cluster are similar) and low inter-cluster similarity (words from different 

clusters are dissimilar). 

1.2.2 Specific objectives 

The specific objectives of the research are: 

1) To collect large Arabic text from the web, such as Arabic Wikipedia XML 

dump file, or any other free Arabic corpus founded online. 

2) To perform pre-processing on the collected text such as, removing Arabic 

diacritics (tashkil and Tatweel), removing extra spaces between words and 

none Arabic characters 

3) To build Arabic vector representation of words using a couple of models 

including glove and w2v. 

4) To create the term frequency matrix for the generated vectors by averaging 

the word vectors for each word.  

5) To pipeline generated features with the transformed text data to learn to 

classify the word vectors with Extra Trees classifier and creating the 

classification model. 

6) To train the classification model with new training data and predicting the 

testing data into their pre-defined categories. There are different class 

labels (word clusters) created and each class has its unique words. 

7) To evaluate the generated clusters using most accepted and used metrics in 

text mining field such as precision, recall, f-measure and confusion matrix. 

 



www.manaraa.com

4 
 

1.3 Importance of the research 

The importance of the research stems from creating Arabic vector representation of words 

to create high similarity clusters of semantically related words. These clusters can be used 

by the Arabic semantic applications like question answering systems, search engines and 

query expansion. 

The generated Arabic vector representation of words is updatable vector and not a static 

vector. This feature increases the scalability of the generated clusters by allowing to 

enhance the vector with new text and generate new Arabic vector characterized by new 

sematic related words this provides continuous availability resources for various Arabic 

applications in information retrieval and semantic applications.  

1.4 Scope and limitations 

1. The Arabic vector representation of words is generated using w2v models. 

2. The implementation of w2v is found in a couple of programming languages such 

as Java, C and Python. We use Python due to its efficiency and widely uses in the 

data science projects. 

3. w2v has two architecture options which are SG (default) or CBOW. We have 

experimented with CBOW architecture since it is faster in training. 

4. Experiments conducted only on Arabic text since it is our chosen domain. 

5. For results evaluation, we use the following metrics: confusion matrix, precision, 

recall and f-measure which are the most appropriate and proved effective in such 

situations. 

1.5 Methodology 

The methodology used to achieve the research objectives comprises the following steps: 

1. Collect Arabic Texts 

We download the Wikimedia database dump of Arabic Wikipedia on May 20, 

2017. The text volume is about 1.7GB and it is a collection of written Arabic 

articles in various domains. 

 



www.manaraa.com

5 
 

2. Pre-Processing 

The downloaded text contains various noisy symbols and characters such as 

question marks, dashes, under scores, extra spaces, numbers, dollar sign, 

diacritical marks and character elongation. We perform two processes to normalize 

the text to be used as a better input for the next step. First process: dropping the 

diacritical marks and the character elongation (tatweel) using Pyarabic Python 

library (Zerrouki, 2010). Second process: remove all noisy symbols and keep only 

the Arabic letters using our Python script which is effective for large text (see 

Appendix (A.1) for more information). 

 

3. Build the Vectors Representation of Words 

We build the vector representation of words using w2v model. It accepts the input 

as sequence of words as one-hot encoding which is not a better input (see Section 

(2.1) for more information). Also w2v accepts the input as a phrase which is a 

better input for creating high quality word vectors. We use the word2phrase 

algorithm to join adjacent pairs of words that appear at least five times in text with 

an ‘_’ character.  

 

4. Generate the Classification Features 

To describe the frequency of words in the text corpus we build the term-frequency 

(TF) matrix from the generated word vectors.  We use a GitHub repository class 

(Mean Embedding Vectorizer) written by Nadbordrozd which averages word 

vectors for all words in a text (Nadbordrozd, 2016). We construct TF matrix to 

create the classification features for the next classification process. 

 

5. Generate the Classification Model 

To generate the classification model we must assemble the transformed text data, 

the generated classification features and the extra tree classifier to classify word 

vectors. To implement this, we use the Sklearn’s pipeline library which assembles 

several steps that can be cross-validated together while setting different 

parameters. 

 



www.manaraa.com

6 
 

6. Generate Word Clusters 

To generate word clusters from text corpus, we fit the generated classification 

model with training (labelled and unlabelled data) and testing data. The model 

classifies the testing words into their predefined categories (class labels) and each 

class label (category) has its unique words. 

 

7. Evaluate Results 

To evaluate the generated clusters, we use the most common metrics in this field 

such as confusion matrix, precision, recall and f-measure. They are explained in 

Section (4.6.2). 

The rest of the thesis is organized as follows: Chapter 2 describes the theoretical and 

technical foundation of our approach. Chapter 3 reviews related works. Chapter 4 

describes the proposed approach. Chapter 5 presents the experiments and the results. 

Finally, Chapter 6 presents the conclusions and future works. 

 

 

 

 

 

 

 

 

 

 

 

 

 

  



www.manaraa.com

7 
 

Chapter 2  

Theoretical and Technical Foundation 

 

This chapter presents an overview of the theoretical aspects alongside with the technical 

foundation used to create the vector representation of words. It gives an overview about 

word clustering techniques, the different models that create word vector, the software 

environment, libraries and tools for creating word clusters, the issues and complexity in 

creating word clusters from large unstructured Arabic text, and finally the evaluation and 

the quality of a generated word clusters. 

2.1 The Complexity of Creating Word Clusters from Large Unstructured 

Arabic Text. 

Creating word clusters from large unstructured Arabic text is a complex process. It 

requires to takes a lot of considerations before cleaning the text and it is considered a 

trade-off process due to the following reasons: 

- The richness of the morphological and the grammatical nature of the Arabic 

language leads to create very large and growing word vectors. This is due the 

different forms a word can take, for example if we added suffix (ا) to the verb 

 which means past simple event and also means that it’s (ذهبا) it becomes (ذهب)

done by two persons (Duwairi, 2006). 

- If we consider to use the stemming approach and reducing the words to their root 

pattern, the text words can be reduced from thousands to hundreds (Eldos, 2003). 

Also, this leads to lose the semantic meanings between the words and creates 

unbalanced text and thus poor word vector quality. 

- The problem of the lack of Arabic NLP tools and resource that benefit from the 

capabilities provided by semantic web technologies such as intelligent reasoning 

over data, semantic search and data interoperability (Al-Khalifa & Al-Wabil, 

2007). 



www.manaraa.com

8 
 

In summary of these challenges we can say that creating word clusters require a technique 

that can be able to preserve the semantic relations between words and at the same time 

keeps the text balanced and this is what we try to achieve in this research. 

2.2 Overview of Word Clustering Techniques 

Many applications in Natural Language Processing (NLP) benefit from the use of word 

clustering or document clustering, it improves the performance on many NLP tasks such 

as information extraction, information retrieval, search engine and machine translation 

(Denkowski, 2009). The task of word clustering is considered as unsupervised 

classification technique and can be viewed as text clustering problem. Each cluster has its 

unique words and a context that is different from other clusters. To define the similarity 

between these words or data points in high-dimensional space a distance measure is used 

such as Euclidean, Cosine, Jaccard, and Edit Distance. Clustering algorithms fall under 

three primary categories: 

- Partitional Clustering 

Partitional clustering algorithms divide the data points or objects into non-

overlapping clusters(subsets) such that each point is in exactly one subset and the 

data points within a cluster are similar. The algorithms require the number of 

clusters to be generated in advance, which can be used in many applications like 

defining the static routes for network performance analysis. One of the most used 

partitioning algorithms is k-means clustering; in which, each cluster is represented 

by the center or means of the data points belonging to the cluster and is sensitive 

to anomalous data points and outliers. K-medoids clustering; in which, each cluster 

is represented by one of the objects in the cluster. k-medoids is less sensitive to 

outliers compared to k-means. Clara algorithm is an extension to k-medoids for 

large data sets. Figure (2.1) illustrates the concept of partitional clustering, where 

the data points are non-overlapping. 

 



www.manaraa.com

9 
 

 

Figure (2.1): Example of partitional clustering (slideplayer, 2018) 

- Density Based Clustering  

Density based clustering algorithms do not require the number of clusters in 

advance (as parameter). Rather they infer the number of clusters based on the 

density approximation of data. It creates clusters of any shape in a dataset 

containing noise and outliers. Density-Based Spatial Clustering of Applications 

with Noise (DBSCAN) algorithm is the most well-known density based algorithm. 

It works efficiently on large databases with no prior knowledge of the number of 

clusters required. The idea of DBSCAN is that for each point of a cluster, the 

neighborhood of given radius has to contain at least minimum number of points. 

Figure (2.2) illustrate the clusters which are the dense region in the data space, 

separated by regions of lower density points. 

 

 

Figure (2.2): Example of density-based clustering  

(Ester, Kriegel, Sander, & Xu, 1996) 

 

 



www.manaraa.com

10 
 

- Hierarchical Clustering 

Hierarchical clustering algorithms divide the data points into sets of nested clusters 

that are organized as a tree. There are two types of this method: Agglomerative; 

which start with the points as individual clusters, and at each step, merge the 

closest pair of clusters, and divisive method; which start with one, all-inclusive 

cluster and, at each step, split a cluster until only singleton clusters of individual 

points remain. The distance between each cluster is measured with three different 

methods. Method one: Single Linkage, the distance between two clusters is 

defined as the shortest distance between two points in each cluster. Method two: 

Complete Linkage, the distance between two clusters is defined as the longest 

distance between two points in each cluster. Method three: Average Linkage, the 

distance between two clusters is defined as the average distance between each 

point in each cluster to every point in the other clusters. Figure (2.3) illustrate an 

example of hierarchical clustering, which clusters group of countries (25 country) 

into three different clusters according to human development index in listed 

countries. 

 

Figure (2.3): Example of hierarchical clustering method 

(Asia Pacific Forum, 2005) 



www.manaraa.com

11 
 

2.3 Vector Representation of Words 

2.3.1 Definition of Vector Representation of Words 

Vector representation of words is a way to represent a word or document as a vector. In 

traditional vector space models, a word is represented by one-bit position in huge vector 

(called one hot encoding). For example, if we have a vocabulary of 10 words, and 

“Palestine” is the 4th word in the text, it would be represented by: 000100...00. This 

representation treats word as atomic and does not provide meaningful comparison 

between words other than equality. Also, this representation results in word vectors that 

are extremely sparse. 

2.3.2 The Need of Using Word Vector 

Word Vectors (WV) provide a fresh perspective to most problems in NLP tasks. It 

becomes an alternative to the classical methods that solve these problems. For example, 

WV does help with identifies the similar words and synonyms in large text. On the other 

hand, using the classical methods (edit distance, WordNet, stemming and using 

dictionaries) to identify word similarities, requires a lot of human efforts and more than 

one tools. 

WV are used with various NLP applications such as, machine translation, part-of-speech 

and named entity recognition, relation extraction, co-reference resolution, clustering, 

semantic analysis of documents and sentiment analysis (Maas et al., 2011).  

2.4 The Different Models that Create Word Vectors 

Many of WV models are implemented to create the vector space representation of words; 

they have different ratio of capturing the semantic relatedness between words. These 

vector models either are predictive models (also known as neural word embedding 

models) or count based model (also known as distributional semantic models). Predictive 

models learn their vectors by trying to predict the neighbor’s words. While count models 

or distributional semantic models learn their vectors by computing the statistics of how 

often some word co-occurs with its neighbor words in a large text corpus, and then map 

these counts-statistics to vector for each word (Baroni, Dinu, & Kruszewski, 2014). We 



www.manaraa.com

12 
 

just concentrate on predictive models which are relate to our work since they are 

computationally efficient than count models for learning word embedding from raw text. 

There are two famous predictive models that creates word vectors from corpus, which are: 

Word2vec model and Glove model. Next, we elaborate in each of them. 

2.4.1 Word2vec Model 

w2v model, developed by Mikolov and Dean (2013),  has gained a lot of attention in the 

recent years. w2v is a feed-forward neural network that learns in unsupervised way the 

representations of the word vectors to capture the semantic relationships. Also, w2v is a 

shallow learning algorithm which is computationally less expensive than other learning 

models. w2v uses two architectures for learning and creating word vectors, which are: SG 

and CBOW. 

- Continuous bag-of-words (CBOW) 

The CBOW model predicts target words (e.g. sat) from source context words (The cat sat 

on floor) It assumes that there is only one word considered per context, which means the 

model will predict one target word given one context word, which is like a bigram model 

(Rong, 2014). CBOW model uses a window (number of words) of word to predict the 

middle of word. Figure (2.4) depicts an example window word of size two to predict the 

target word (sat) from the source context words (The cat sat on floor). 

 

Figure (2.4): Continuous bag-of-words model (Mikolov & Dean, 2013) 



www.manaraa.com

13 
 

To calculate the probability of the next word given the previous words, CBOW uses 

objective function to train the neural network and compute the target words probabilities 

by summing the log probabilities of the source words as shown in Equation (2.1) 

𝐽𝜃 =
1

𝑇
∑ 𝑙𝑜𝑔 𝑝(𝑤𝑡  | 𝑤𝑡−𝑛 , … , 𝑤𝑡−1, 𝑤𝑡+1, … , 𝑤𝑡+𝑛 )

𝑇

𝑡=1

 
 

(2.1)   

  

The objective function 𝐽𝜃 receives a window of n words around the target word (𝑤𝑡) at 

each time step (𝑡) and calculates the probability of the target word. CBOW is several times 

faster to train than the skip-gram, slightly better accuracy for the frequent words. Also, it 

uses continuous representations whose order is of no importance. 

- Skip-gram (SG) 

SG model uses the center word to predict the surrounding words in window as shown in 

Figure (2.5). 

 

Figure (2.5): Skip-gram model (Mikolov & Dean, 2013) 

The SG objective function (Equation 2.2) sums the log probabilities of the surrounding 𝑛 

words to the left and to the right of the target word (𝑤𝑡). 

𝐽𝜃 =
1

T
∑ ∑ log 𝑝(𝑤𝑡+𝑗  | 𝑤𝑡)

−𝑛≤𝑗≤𝑛,≠0

𝑇

𝑡=1

 

 

(2.2) 



www.manaraa.com

14 
 

   

SG works well with small amount of training data and represents well even rare words or 

phrases. 

2.4.2 Glove Model 

Glove is another predictive model created by Pennington et al. (2014) . Glove works like 

w2v, except that the glove input is a matrix that holds the ratio of the co-occurrence 

probabilities of two words, while w2v takes the entire corpus as input. The glove algorithm 

consists of the following steps: 

- Collect word co-occurrence statistics in a form of word co-occurrence matrix 

𝑋 Each element 𝑋𝑖𝑗   of such matrix represents how often word 𝑖 appears in context 

of word 𝑗. 

 

- Define soft constraints for each word pair as stated in Equation (2.3) 

 

𝑤𝑖
𝑇𝑤𝑗 + 𝑏𝑖 + 𝑏𝑗 =  log 𝑋𝑖𝑗   (2.3) 

       

𝑤𝑖 is the vector for the main word, 𝑤𝑗 is the vector for the context word, 𝑏𝑖 and 𝑏𝑗  

are scalar biases for the main and context words. 

 

- Define a cost function as stated in Equation (2.4) 

 

 

𝐽 = ∑ 𝑓(𝑋𝑖𝑗)(𝑤𝑖
𝑇𝑤𝑗 + 𝑏𝑖 + 𝑏𝑗 − log 𝑋𝑖𝑗)

2
𝑣

𝑖,𝑗=1

          

 

 

 

(2.4) 

 

Where𝑤𝑖  , 𝑤𝑗  , 𝑏𝑖, and 𝑥𝑗 are parameters to learn, 𝑣 is the size of the vocabulary. 

𝑓(𝑥) is a weighting function which the performance of the model depends on it. 

 

Next, the software environment, libraries, as well as tools used to develop our approach 

to create word clusters are represented. 



www.manaraa.com

15 
 

2.5 Software Environment, Libraries and Tools for Creating Word Clusters 

Creating Arabic word clusters from large text is a challenging task. In order to create these 

clusters, different tools are needed besides our main approach. These tools are used to 

generate the Arabic word clusters from large Arabic plain text.  

2.5.1 The Software Environment 

Performing text pre-processing on large text files consumes a lot of computer RAM, time 

consuming process and sometimes cause computer halt and therefore lose a data. Also 

creating word vectors from large text requires a lot of computer RAM. We performed 

these processes using rented virtual private server (VPS). We used another environment 

for creating the word clusters since it requires less computer resources (see Section 5.2 for 

more information).  

2.5.2 The Downloaded Arabic Text and the Pre-processing Tools 

We downloaded the Wikimedia database dump of the Arabic Wikipedia on May 20, 2017 

(Wikipedia, 2017). The corpora are collection of articles written in various domains such 

as politics, art, religion, health, economic, etc. The articles contain a lot of none Arabic 

characters like English and Spanish. Also, they contain the diacritical marks, extra spaces, 

dashes, question marks, dollar signs, character elongation, etc. 

We have performed text pre-processing in two stages. Stage one, removes the diacritical 

marks and character elongation, e.g., (فلســـــــــطين). We use an external Python library 

written by (Zerrouki, 2010). Stage two, normalize, the text by keeping only Arabic 

characters. We write a Python script to remove none Arabic characters and symbols (see 

Section 4.2 for more information). 

After cleaning and normalizing the downloaded text, we create word phrases from the 

text. These word phrases constitute a better input for w2v model and thus create high 

quality word vectors. Word2phrase is a w2v package tool that uses bigram statistics to 

form phrases in text corpus based on a minimum and maximum frequency. 

 



www.manaraa.com

16 
 

2.5.3 Python Libraries 

We use two Python libraries to help in creating Arabic word clusters. First, we use a couple 

of Skylearn Python libraries such as Extra tree classifier algorithm to classify the word 

vectors. Pipeline library to assemble several steps that can be cross validated together 

while setting different parameter. K-Fold library which splits training data into training 

and testing data and metrics library to calculate the model score accuracy, precision, recall 

and confusion matrix metrics. Second, we use gensim library to convert the generated 

word vector model file (.bin) to (.txt) file for later use in the classification process, see 

section 4.2 for more information. 

In summary of these steps, we created these categories “clusters” from the training text 

and each cluster has its own unique vocabulary. In addition, we can add new cluster label 

“classification label” and make the prediction again. 

2.6 The Evaluation of Generated Word Clustering 

We evaluate the classification results using the most used and accepted metrics in text 

classification field. We use the confusion matrix to validate performance of the generated 

classification models, since it is considering an excellent evaluation metrics of multi-class 

classification problem. To improve reading of the classification results, the confusion 

matrix results can be plotted, since the elements of the diagonal are correct predictions, 

and far elements are incorrect predictions. Table (4.1) describes the used terms of the 

confusion matrix, where the columns are the predicted class, and the rows are the actual 

class (Kohavi & Provost, 1998). 

 

Table (2.1): Confusion matrix illustration 

 Predicted: No Predicted: Yes 

Actual: No True Negative (TN) False Positive (FP) 

Actual: Yes False Negative (FN) True Positive (TP) 



www.manaraa.com

17 
 

 

 

 True Negative (TN): refer to the number of correct prediction that an instance is 

negative  

 False Positive (FP): refer to the number of incorrect prediction that an instance is 

positive  

 False Negative (FN): refer to the number of incorrect prediction that an instance 

is negative  

 True Positive (TP):  refer to the number of correct prediction that an instance is 

positive. 

Also, we use another classification evaluation metrics such as accuracy (Equation 2.5), 

precision (Equation 2.6), recall (Equation 2.7) and F-measure (Equation 2.8) which are 

the most accepted metrics in data mining tasks.  

 Accuracy: the total number of predictions that were corrected. It is determined 

using the following equation. 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
(𝑇𝑃 + 𝑇𝑁)

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
 

(2.4) 

 Precision: the total number of the positive predicted that were corrected. It is 

determined using the following equation. 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 

(2.5) 

 

 Recall: the total number of positive predictions that were correctly identified. It is 

determined using the following equation. 

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 

(2.6) 

 F-measure: it is another standard measure used to measure the performance of the 

classification models. This measure comes handy when the total number of 



www.manaraa.com

18 
 

negative cases greater than the number of positive cases. It is mean parameter and 

calculated using the precision and recall evaluation metrics. 

𝐹 − 𝑚𝑒𝑎𝑠𝑢𝑟𝑒 = 2
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∗ 𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙
 

     (2.7) 

 

2.7 Summary 

In this chapter, we have presented an overview of existing clustering algorithms and how 

they used the distance function to define the similarity between words in a dimensional 

space. Also we give a theoretical overview about the proposed approach, we illustrate the 

definition of word vectors and how they overcome the difficulty of encoding 

representation technique and the use of word vectors in common NLP tasks. The most 

famous models that used to create the vector representation of words are; word2vec model 

and glove. We have explained the environment used to implement the different parts of 

the proposed approach, then we have described the downloaded corpus and the tools that 

are used to pre-process the downloaded text, then we introduced the Python libraries that 

are used to create the word clusters. After that, we have explained the problems of creating 

word clusters from large unstructured Arabic plain text, and now the proposed approach 

can help to overcome these problems. Finally, we have presented evaluating methods for 

the generated word clusters by using the most accepted and used matrices in this field, 

which are: precision, recall, f-measure, accuracy and the confusion matrix.  

  



www.manaraa.com

19 
 

Chapter 3  

Related Works 
 

This chapter presents a review of researches that are related to our research and identifies 

their drawbacks, limitations and draw conclusion. In order to present related works better, 

we categorize them into three groups: group one, summarizes the traditional text 

classification and clustering techniques for large text. Group two, summarizes word 

vectors based classifying and clustering techniques. Group three, summarizes other 

models for creating word vectors. 

3.1 Current Text Classification and Clustering Techniques for Large Text  

Many of existing text mining algorithms use the bag-of-words model, where text terms 

are used as a feature for representing the document. This model ignores the semantic 

relationship among words (Heap, Bain, Wobcke, Krzywicki, & Schmeidl, 2017). Recent 

researches have improved the classification and the clustering process by enhancing the 

feature selection process and integrating other methods alongside classification and 

clustering process. The related works in this section is fallen under into two subsections; 

section one, related works that works on feature selection enhancing. Section two, related 

works that uses external methods and developed techniques for large text classification 

and clustering process. 

3.1.1 Feature Selection Enhancing 

Bloehdorn et al. (2006), improved the classification and the clustering tasks by integrating 

conceptual features that are constructed automatically from ontologies. They used 

OHSUMED (Hersh, Buckley, Leone, & Hickam, 1994) which is a medical text collection 

and consist of 54,708 documents. Although their approach shows a competitive result and 

overcomes the limitation of bag-of-words model, it still faces the following problem: it 

captures just the concepts that are labelled by noun phrases from the ontology, this 

generates less semantic concepts and less rich features.  

 



www.manaraa.com

20 
 

Al Tarouti and Kalita (2016) used the words embedding technique to enhance and 

automatically construct the WordNet for low-resource language and they experimented 

with Arabic language. They used the w2v model for generating the vector representation 

for Arabic words using three freely available corpora; watan-2004 corpus (12 million 

words), Khaleej-2004 corpus (3 million words) and the Wikipedia Arabic articles (21 

million words). They used the generated word vectors to enhance the translation method 

for automatic WordNet construction. Their method produced Arabic synonymous with 

78.4% precision and semantically related words up to 90.4% precision. Despite the high 

precision value for the semantically related words, the generated word vectors still are not 

of high-quality vectors because they don’t do the pre-processing steps for the collected 

words and they depend on changing the w2v settings like window size to obtain high 

precision. The text pre-processing is necessary to generate a balanced vector. 

Nabil, Atiya, and Aly (2015) combined linguistic methods with statistical methods to 

generate Arabic key phrases that provide semantic meaning as they can be used in many 

NLP applications. They developed a stemmer and part of speech tagger and trained on 

Arabic tree bank corpus which consists of about one million words in various topics. Then 

they used the TF-IDF as statistical method to measure the similarity candidate patterns 

generated by their POS tagger and the document titles. Also, they used different statistical 

methods like w2v model. In summary, their research concludes that using statistical 

features in the key phrase extract task leads to better results if corpus is well annotated.  

Their work is different from ours, but both of us used w2v model to create the semantic 

vectors with different quality. Also, they didn’t implement a standalone text pre-

processing tasks on the used text before creating the vectors, they just depended on the 

POS tagger and stemmer pre-processing methods which produced unbalanced text and 

hence unbalanced vectors be generated and will affect the system performance. 

 

 



www.manaraa.com

21 
 

3.1.2 External Methods and Developed Techniques 

Abu Tair and Baraka (2013) developed a parallel classifier for large Arabic text 

classification task. The work based on the K-Nearest Neighbour (K-NN) Algorithm which 

is known as one of the best classification algorithms, but requires a large amount of 

computational power for high dimensional text. To overcome this, they implemented the 

proposed classifier in parallel using the Message Passing Interface (MPI) on 

multicomputer cluster. The proposed classifier achieved accuracy, precision, recall and f-

measure around 95%. Also, they have used the Bag-of-Words (BOW) document indexing 

to represent the text documents. In addition to that they had performed a couple of pre-

processing tasks on the corpus like string tokenization, stop words removal, stemming and 

light stemming to enhance text document representation process and create more semantic 

feature vector. Despite the approach achieves high results, using stemming and light 

stemming delete much semantic information between words and thus the feature vector 

does not capture the complete semantic meanings between words. 

Huang (2008) used different similarity measures with partitional clustering algorithm for 

processing large datasets. The approach relies on the BOW techniques to represent the 

documents and their contents. It applies on the following measures: cosine similarity, 

Jacquard correlation coefficient, Pearson correlation coefficient, Euclidean distance and 

Kullback Leibler divergence in order to find the closeness distance between a pair of terms 

or objects and thus create accurate clusters which are semantically related. The last 

measure gives slightly better results in their clustering results and creates more balanced 

and closer clusters. The Jacquard and Pearson coefficient create more coherent clusters 

but not semantically related. Additionally, the quality of the generated clusters can be 

affected by the following factors: the representation of the documents or the feature 

selection, as we mentioned before that BOW representation suffers from ignoring the 

semantic meaning between the words. Also, the different results of the similarity measures 

indicate that these measures can affect the quality of the generated clusters. The cluster 

algorithm itself can affect the results, as in partitional clustering it is fast but requires to 

determine the number of clusters before creating the clusters, while hierarchical clustering 

algorithm is slower and gives good results for categorical data (Xu & Wunsch, 2005).  



www.manaraa.com

22 
 

Al-Shalabi and Obeidat (2008)  improved the Arabic text classification task with using K-

NN classifier and N-Grams document indexing instead of BOW indexing. They used 

online Arabic corpus collected by Mesleh (Moh'd A Mesleh, 2007) and it consists of 1445 

documents that vary in length and classified into nine categories. The average accuracy in 

case of using N-Gram is 0.7353 while in single term indexing is 0.6688. Despite using 

both word-level unigrams and bigrams in document indexing, the average accuracy is 

slightly different than that using BOW indexing. Their approach still does not capture the 

semantic information among the document words and less semantic features are created. 

3.2 Current Researches and Approaches that Use Word Vectors in Classification 

and Clustering of Large Text 

Ma and Zhang (2015) used w2v to process big data. They aimed to select useful features 

or decrease the feature dimension from processing big data. They trained the w2v model 

with 20 Newsgroups dataset to create WV, then they applied the linear calculation for 

each word vector, and found semantic related words, after that, they grouped words 

together using k-means. They aimed from this strategy to decrease the data dimension and 

speed up the multi-class classification process and thus the new dimension will decrease 

the time cost in the machine learning tasks. Both of our approach and this approach benefit 

of creating word vectors. We use the word vectors to create the classification features, 

while their approach used the word vectors to decrease the data dimension by selecting 

new feature dimension. Their approach gives accuracy score for the classification 

performance on average of five different data dimension 77%. While our approach 

attempts to give classification model accuracy of 85% on average. Their work is time 

consuming to create similar words as they applied linear calculation for each word vector 

then clustered these words using k-means algorithm, while our approach attempts to 

average word vectors and use this as a feature for the classification process. 

Baker and McCallum (1998) used the distributional clustering technique to cluster words 

into groups. By using distributional clustering, they reduced the feature dimensionality by 

three orders of magnitude and lose only 2% accuracy on 20 Newsgroups dataset which 

contains about 20,000 articles. They created clusters of words based on the distribution of 



www.manaraa.com

23 
 

the class labels associated with each word, then they use feature reduction for text 

classification problem. In our approach, we create word clusters based on the semantic 

similarity between words, while their approach considered the distributional theory which 

sometimes creates misleading distribution and less quality. 

Wei et al. (2015) proposed a semantic approach for text clustering that overcomes the 

traditional clustering algorithm problem (does not consider the sematic relationships 

among words). They added semantic information from ontology such as WordNet which 

is widely used to improve the text clustering task. They built a lexical chain to extract core 

semantic features that expressed the topic of documents, the lexical chain is restricted only 

for four types of relations: identity, synonymy, hypernym, and meronym. To find the 

similarity between concepts, they proposed a modified similarity measure based on 

WordNet for word sense disambiguation. In WordNet, concepts are nodes and semantic 

relations between these concepts can treated as edges. They compute the similarity 

between two concepts by finding the least common node that connects these concepts, 

then the distance between two concepts is computed. However, WordNet lexical databases 

not including all semantic relationships between words. Also, WordNet focuses on verbs, 

adjectives and nouns which leads to less semantic concepts. 

Wu (2014) presented a theoretic clustering algorithm to improve the process of phrase 

recognition and achieved 95% model accuracy. To achieve that, he designed a top-down 

division clustering algorithm based on the information gain theory, clustered similar 

words from unlabelled texts and used them as features for the classification process. He 

used iterative k-means clustering algorithm to create word clusters. Our work is similar to 

Wu work except in two points. First point: his work is directed to English language while 

ours is directed to Arabic language and it can be generalized to any other language and is 

not affected by the language characteristics and grammar. Second point: we created word 

vectors through w2v model which is the most famous and used in current NLP researches, 

while Wu created word vectors by using iterative k-means clustering algorithm with 

support of other contextual information like POS tag information.  



www.manaraa.com

24 
 

Alotaibi and Anderson (2017) have applied word clustering technique to improve the 

sentiment analysis task. They applied the brown clustering algorithm to create word 

clusters. It is a hierarchical clustering algorithm which generate clusters of words 

depending of their context within the same data set, as similar words have similar 

distribution of words to their left and right. They experimented with Arabic language and 

developed their corpus from four different genres; news, reviews, user market reviews, 

and movie reviews. After creating word clusters, the cluster label of the word is used as a 

feature for the later classification process. Their research emphasized the potential gain of 

using word clustering as a feature for classification. Our work is almost similar to their 

work except in the following point: they used the brown clustering algorithm to generate 

word clusters where it does not consider the semantic information between words and 

depends on the distribution of words to group similar words, while our approach uses 

neural networks to create hidden layers that able to group similar words and preserve 

semantic information between words. 

Lilleberg, Zhu, and Zhang (2015) have classified documents with using word2vec. They 

used skip-gram model to classify the documents. To create the features for the 

classification process they added weights to each word based on its frequency within the 

document, they create a weighted sums of word vectors to represent document combined 

with tf-idf. They experiment with 20 newsgroup dataset which have 18,000 newsgroup 

posts on 20 topics. They achieve 90% accuracy score. We adapt the same approach, 

excepts that we created the classification features by averaging the word vectors. 

In the context of Arabic applications, to the best of our knowledge, our work presents a 

new way to build word clusters from large Arabic plain text, but closer applications have 

been introduced. Al Zamil and Al-Radaideh (2014) extracted semantic relationships from 

multiple datasets. These datasets represent Classical Arabic (Holy Qur’an), Modern 

Standard Arabic (newspapers), and unstructured Arabic texts (social blogs). To enrich the 

semantic relationships extraction process, they used Arabic WordNet (AWN) which helps 

to obtain the lexical structure of the patterns. AWN contents come from the translation 

process of English synsets to Arabic synsets which does not take in consideration the 



www.manaraa.com

25 
 

complex grammar nature of the Arabic language, thus less rich semantic relationships are 

found in AWN. 

3.3 Other models for creating word vectors 

Beside the neural network models to create word vectors, there is a statistical 

computations models applied to corpus in order to create word vectors. These models like 

Latent Semantic Indexing (LSI) but most commonly referred to as Latent Semantic 

Analysis (LSA), Probalistic latent semantic analysis (PLSA), Latent Dirichect Allocation 

(LDA) are popular methods and have good research and community support (Alghamdi 

& Alfalqi, 2015). LSI is a linear model and it’s not a best solution to handle non-linear 

dependencies. LSI model create sparse vector spaces for words and uses Singular Value 

Decomposition (SVD) to reduce vectors dimensions. SVD is mathematical method that 

can reduce a N-dimensional dataset into fewer dimensions, different methods exist such 

as Principle Components Analysis, Factor Analysis, and so on. SVD is designed for 

normally- distributed data but is not appropriate for count data (Rosario, 2000).  

Al-Anzi and AbuZeina (2017) used the cosine similarity measure and latent semantic 

indexing (LSI) to enhance Arabic text classification task. They used LSI to represent the 

textual data as numeric vectors and maintain the semantic information between the words. 

LSI produced a matrix containing word counts per paragraph (rows represent unique 

words and columns represent each paragraph) and a mathematical technique called 

singular value decomposition (SVD) is used to reduce the number of rows while 

preserving the similarity among columns. They experimented with a corpus which 

contains 4000 newspaper documents belonging to 10 different categories. They generated 

the textual features of the corpus using LSI-SVD technique and experimented with 8 

classification methods, and the results showed that support vector machine and k-nearest 

neighbours classifiers which has the top performance compared to the other classifier. LSI 

is a distributional model designed for normally distributed-data, so inappropriate for count 

data, also SVD representation need more storage and computing tie. So it is not efficient 

representation compared to deep neural networks (Barbara, 2000). 

 



www.manaraa.com

26 
 

3.4 Summary 

In this chapter, we have presented the research’s that are related to our research, and 

identified their drawbacks, limitations and draw conclusions. We categorize them into 

three groups, which are: group 1; current text classification and clustering techniques for 

large text, many of these researches using the BOW model. In this model a text words are 

used as a feature for representing the document and use these features in document 

classification task. However, this model does not capture the semantic information among 

the document words and hence less semantic features are created. Other researches 

overcome the limitation of BOW model by integrating conceptual features (rich semantic 

features) that are constructed automatically from ontologies. Other researches use N-

Grams model (the number of words taken together as a single entity) with BOW model, 

the N-Grams are unigrams(n=1), bigrams(n=2), etc., however the model’s accuracies 

resulted of using these word-level unigrams and bigrams in document indexing is not 

promising and is slightly different from using BOW indexing. Group 2; the current 

researches and approaches that uses word vectors in classification and clustering of large 

text have used the generated word vectors for different tasks such as selecting useful 

features, decreasing the feature dimension and improving the text clustering task. In the 

context of Arabic researches, to the best of our knowledge, our work presents a new way 

to build Arabic word clusters from large Arabic plain text, but closer application has been 

introduced. Al-Anzi & AbuZeina used the cosine similarity measure and latent semantic 

indexing to enhance Arabic text classification task. Using the latent semantic indexing 

with a mathematical technique called singular value decomposition, semantic features are 

extracted from 4000 news document for the classification task. However, the latent 

semantic indexing is not an efficient representation for capturing the semantic 

relationships between text words, as it is designed for normally distributed data. Group 3; 

other models for creating word vectors, these models are linear models not uses the neural 

network as word2vec. These models like LSI uses statistical computations calcualtions 

applied to corpus in order to create word vectors. However these models easy to 

impelement, understand and use, but not an efficeinet for skewed distribution data. 

 



www.manaraa.com

27 
 

Chapter 4  

Clustering Words Semantically 

 

In this chapter, we present our approach for creating clusters of semantically related words 

from large Arabic plain text. The approach consists of several stages starting from 

collecting text data and pre-processing, creating the classification features by averaging 

word vectors for all words in the text, creating the classification models, training the 

classification models with labelled and unlabelled data and finally creating word clusters. 

The stages of the approach are illustrated on Figure (4.1). 

 

 

Figure (4.1): Generating the word clusters (the proposed approach) 

 

It consists of six stages: stage 1 is concerned with collecting Wikimedia database dump 

of Arabic Wikipedia on May 20, 2017. Stage 2 is pre-processing the downloaded text 

which consists of two sub processes. Process 1 removes the diacritical marks and character 

elongation and process 2 normalizes the text by removing extra space, dashes, and keep 

only Arabic text. Stage 3 creates word vectors which consists of two sub processes. 



www.manaraa.com

28 
 

Process 1 creates the word phrases from the pre-processed text, these phrases are used as 

better input for creating word vectors and process 2 uses these word phrases to create the 

word vectors using w2v model. Stage 4 prepares the classification input (features 

selection) by averaging the generated word vectors for all the words. Stage 5 builds the 

classification models which consist of two sub processes. Process 1 assemblies the 

generated classification features, the generated word vectors and process 2 implementing 

process 1 by using the skylearn pipeline library. Stage 6 gives the output which consists 

of two sub processes. process one creates the word clusters by training the classification 

model with labelled and unlabelled data and classify the testing data into their predefined 

categories and process 2 evaluates the classification models with the most used and 

accepted measures in text classification problem like confusion matrix, accuracy, recall, 

precession and F-measure (Al-Shalabi & Obeidat, 2008). Finally, we obtained hundreds 

of predicted words which are classified into their predefined categories. We consider these 

class labels the clusters which are different from each other and have similar words in 

each cluster (class label). We elaborate in each stage of these stages.  

4.1 Collecting Text Data 

Arabic language is a rich morphological language and spoken by more than 420  million 

people around the world and becomes the sixth most spoken language in the world 

(Istizada, 2017). We use the Wikimedia database dump of the Arabic Wikipedia articles 

to perform our experiments. 

The Wikimedia database dump is a collection of Arabic Wikipedia articles written by 

hundreds of active Internet users (630 users around the world) and is the fifth best 

Wikipedia edition among other languages. The volume of Arabic Wikimedia articles has 

reached as of September 28, 2017 above 510,651 articles (from different domains such as 

politics, economy, comedy, history and others). The text volume about (1.7GB) and 

become (1.3GB) after pre-processing. 

We generate different volumes of Wikimedia text in order to create different sizes of word 

vectors that contain different vocabulary sizes which might affect the quality of the 

generated word clusters. These volumes are as follows: 



www.manaraa.com

29 
 

 304 Megabytes of Wikimedia dump 

 608 Megabytes of Wikimedia dump 

 1200 Megabytes of Wikimedia dump 

 1700 Megabytes of Wikimedia dump 

4.2 Text Pre-Processing 

Text pre-processing and cleaning is a trade-off process (see Section 2.5 for more 

information), so we need large plain text and basic cleaning methods that can preserve the 

semantic information between the words and hence create high quality word vectors and 

not losing too much text data during pre-processing. Therefore, we perform two basic 

steps. 

4.2.1 Dropping the Diacritical Marks and Character Elongation 

Many Arabic words or characters within the downloaded Wikipedia text have the 

diacritical marks. Although these diacritical marks enrich the Arabic words with different 

meaning in different context, they are still on ongoing research on integrating the 

diacritical marks in the semantic web application and different NLP tasks (Chennoufi & 

Mazroui, 2017) (Amrouche, Falek, & Teffahi, 2017). For that reason, we removed the 

diacritical marks to create word vectors with unique and not ambiguous vocabularies. 

Also, many Arabic words in the downloaded Wikipedia text have character elongation or 

Tatweel (like: كتـــــــابي). This also affects the input for creating word vectors. 

To remove the diacritical marks and strip the character elongation for large Arabic text 

we used an external Python library called PyArabic 0.6.2  (Zerrouki, 2010). 

4.2.2 Data Normalization 

The downloaded Wikipedia text contains various none Arabic characters, under scores, 

dashes, numbers, extra spaces and other symbols. To remove these things and keep just 

the Arabic characters, we wrote a Python script to normalize the text and generate plain 

cleaned Arabic text. We used a regular expression that search the downloaded text line by 

line for Arabic characters and join these characters, then we write the output of this script 

in new text file that has only Arabic characters. 



www.manaraa.com

30 
 

With these pre-processing methods, we preserve the semantic meaning between words 

and avoid deleting useful information. Also, we generate a clean text input to create high 

quality word vectors and hence generate word clusters with high accuracy, precision, 

recall and F-measure results. 

4.3 Create Vector Representation of Words 

We create word vectors using w2v model. Two stages are applied to create word vectors. 

First; word phrases are created to constitute the bigram statistics for the word frequency 

in text corpus, then they are used as better input for w2v model. Second; creating the 

vector representation of words using the CBOW model.  

4.3.1 Creating Word Phrases 

For creating better input for w2v, we group up similar words (like “ضغط جوي” to 

 and use word2phrase tool which uses bigram statistics to form a phrase with (”ضغط_جوي“

two words based on a minimum and maximum frequency of adjacent pair of two words. 

Figure (4.2) shows sample of the generated word phrases. 

 

 

Figure (4.2): Sample of generated word phrases 

  



www.manaraa.com

31 
 

4.3.2 Creating Word Vectors 

Word2vec is unsupervised machine learning algorithm that does not need any human 

annotation to learn. The output of w2v (the generated word vectors) can be used in 

clustering algorithms to create clusters of semantically related words. To achieve this step, 

we experiment with the following pre-processed sentence as shown in Figure (4.3). 

 

Figure (4.3): Pre-processed sentence example 

After applying w2v and generating word vectors, we have applied k-means clustering 

algorithm to create clusters of semantically related words from the previous sentence.  

Figure (4.4) shows the final clusters that are generated. 

 

Figure (4.4): Sample of generated word clusters using w2v 

From Figure (4.4), we notice that the word clusters are not semantically related and 

applying k-means clustering algorithm to w2v results is not promising and does not lead 

to effectively creating semantically related word clusters. So to further enhance our 



www.manaraa.com

32 
 

approach and creating better results, we apply Extra Tree classification algorithm to the 

output of w2v. This brings extra semantic features that help in word classification and thus 

create groups (categories) of semantically related words. This same approach has been 

adapted by Lilleberg et al. (2015) in classifying document with using w2v. They used the 

output of wordv2ec with support vector machine. See Section (3.2) for more information. 

4.4 Building the Classification Features 

Building the classification features for the classification tasks is performed by 

constructing Term Frequency Inverse Document Matrix (TF-IDF). This matrix scores 

importance of words or terms in a document based on how frequently they appear across 

multiple documents. 

In order to construct TF-IDF matrix from the generated word vectors, we average the word 

vectors for each word. We used a GitHub repository class (MeanEmbeddingVectorizer) 

written by Nadbordrozd (Nadbordrozd, 2016). Figure (4.4) illustrates the sparse matrix of 

generated classification features, the number in bracket is the index of the value in the 

matrix (row, column) and 1 is the number of times a term appeared in document. 

 

Figure (4.5): Sparse matrix of classification features 

 



www.manaraa.com

33 
 

4.5 Building the Classification Model 

In order to classify the generated word vectors and create the classification model, we 

need to chain the previous steps (the generated classification features and classification 

algorithm) together. 

To achieve this, we used the Sklearn’s pipeline. The pipeline sequentially applies a list of 

transforms (such as extracting text documents and tokenizes them) before passing the 

resulting features along to classifier algorithms. We used the pipeline object to transform 

the process of averaging word vectors and creating classification features and passes these 

features to extra tree classifier. Extra tree classifiers standing for extremely randomized 

trees proposed by Geurts, Ernst, and Wehenkel (2006). Extra tree classifier is an extremely 

randomized version of decision tree classifier and it is productive in the context of a large 

number of numerical features. Figure (4.5) illustrates the data flow for the pipeline 

process.  

 

Figure (4.6): The pipeline data flow 



www.manaraa.com

34 
 

After running the pipeline process, the generated classification model is generated and is 

ready to be fitted with labelled and unlabeled training data. 

4.6 Output 

This is the final stage in our approach to create word clusters. Before training the generated 

classification model, we need to split the data set into k non-overlapping subsets (folds), 

which generate independent training and unseen testing data. Finally, we evaluate the 

generated word clusters with confusion matrix, precision, recall and f-measure metrics. 

This stage consists of two main steps: 

4.6.1 Creating Word Clusters 

In order to create word clusters, we need to split the data set into independent training and 

unseen testing data. We use Python sklearn k-fold cross validation package. It splits 

dataset into k consecutive folds, each fold is then used a validation set once while k-1 

remaining folds form the training set. By using k-fold cross validation, we avoid fitting 

the generated classification model with insufficient training data. Then we fit the 

classification model with different volumes of labelled and unlabelled training data in 

order to create different word clusters volumes. 

The output of the classification model is multiple unique class with multiple similar words 

for each class. Therefore, we consider each class as cluster with similar words. Figure 

(4.7) depicts the results of one of multiple experiments that have been made to create word 

clusters. It shows the predicting classes for the testing words, the model’s accuracy and 

the plotting of the confusion matrix for the classification model.  

 



www.manaraa.com

35 
 

 

Figure (4.7): Example of generated classification results 

  

4.6.2 Word Clusters Evaluation 

In order to evaluate the quality of the generated clusters four measures are used: measuring 

the correctness of extracted patterns with respect to existing correct ones using a recall 

metric, measuring the ability of our proposed approach to detect patterns with respect to 

all retrieved information using a precision metric, denoting the overall accuracy by 

applying an f-measure metrics, and finally, constructing the confusion matrix to visualize 

the performance of the created classification models. 

The evaluation results for the classification model gives very good percentage for 

predicting labelled data and gives 100% model accuracy score for unlabelled data. See 

Section (5.3) for the details. 



www.manaraa.com

36 
 

4.7 Summary 

We have presented the approach to generate word clusters from large Arabic plain text. 

To the best to our knowledge, it is a novel approach which applies the w2v to text 

classification to generate the word clusters.  

We have created word clusters from large Arabic plain text and used the w2v model to 

create such word clusters, but its gives low semantically related word clusters in the favour 

of Arabic language and good semantically related word clusters in the favour of English 

language. This is due to the complex morphological nature of the Arabic language and 

lack of NLP tools for the Arabic language. Our approach benefits from using w2v to create 

the semantic word vectors and preserve the semantic information between the text words 

and then do the classification process to classify these semantic vectors and create the 

word clusters. 

In chapter 5, we present the experiments we performed to evaluate the approach and 

discuss the results. 

 

  



www.manaraa.com

37 
 

Chapter 5  

Experimental Results and Evaluation 
 

This chapter covers the experiment results and shows the effectiveness of our approach to 

create high quality word clusters (the words within a cluster are similar and dissimilar 

from different clusters) from large Arabic plain text. The chapter includes three sections: 

Section 5.1 discusses the experiment design in details. Section 5.2 discusses the results of 

our experiments. Section 5.3 summarizes the chapter. 

5.1 Experimental Design  

In this section we describe and explain the following factors related to the experiments; 

the corpus characteristics, the experimental environment, the experimental parameters and 

how do we tune these parameters, and the experimental procedures. 

5.1.1 The Corpus Characteristics 

We use the Wikimedia database dump of Arabic Wikipedia articles as of May 20, 2017 to 

perform our experiments. These articles are written by hundreds of internet active editors 

around the world. The articles volume is about (1.7GB) and becomes (1.3GB) after pre-

processing. These articles are written for multiple domains or topics such history, health, 

sport, polices, and politics. 

The content of Wikipedia articles is well written and reviewed. It follows the Wikipedia 

policy and guidelines for writing articles. The articles should be clear, be as concise as 

possible, using common sense which emphasize the spirit of the rule, avoiding over 

linking and should not contradict each other (Wikipedia, 2017). 

We divided the downloaded Wikipedia text volume into multiple sets in order to create 

different volumes of word vectors that contain different vocabulary sizes. These volumes 

have changed after pre-processing; Table (5.1) summarize these volumes 

 

 



www.manaraa.com

38 
 

Table (5.1): Wikipedia text volumes after pre-processing 

The original volumes After Pre-processing volumes 

304 Megabytes 259 Megabytes 

608 Megabytes 512 Megabytes 

1200 Megabytes 919 Megabytes 

1700 Megabytes 1300 Megabytes 

 

From Table (5.1), we notice that around 400 megabytes of the text have been removed 

from the corpus volume after pre-processing and it presents 23% of the total volume. This 

is due to the nature of the structure of Wikipedia article pages which contains a lot of 

symbols (like, numbers, dashes, brackets, dots, backslash, etc.). This percentage is 

considered a little bit high. If we consider to use stemming method in pre-processing, more 

data would be thrown and this will affect the number of vocabularies in the generated 

word vectors. Also we need a big corpus to get the word co-occurrence distribution closer 

to real distribution and create more rich semantic vocabularies. For these reasons, we don’t 

consider to use stemming or any other pre-processing methods that largely affects the text 

volumes after pre-processing. 

 

5.1.2 The experiment environment. 

We performed the experiments using two different environments. The first environment 

was used for text pre-processing and to create the word vectors models which requires a 

lot of RAM. We performed our experiments on Virtual Private Server (VPS) with the 

following specifications; Intel Xeon E5-2620v3, Ten cores CPUs, 50 GB RAM, 1200 GB 

disk space, Ubuntu 17 Operating System. The second environment is used to create the 

classification models and create the word clusters. For this environment we used the 

personal laptop with the following specification: Intel Core(TM) i5-2430M CPU at 

2.40GHz, four cores CPUs, 8 GB RAM, 500 GB disk space, Ubuntu 17 Operating System. 



www.manaraa.com

39 
 

 

5.1.3 The experimental parameters 

w2v has main parameters that affect both training speed and quality of the generated 

vectors. There is no universal rules-of-thumbs to tune or control these parameters. So, 

after researching and taking in consideration the nature and the size of the downloaded 

text, we initialize and experiment the w2v model with the following parameters: 

- We used the CBOW architecture instead of skip gram (skip gram is slower but 

better for infrequent words). 

- We set the vector size to 100, reasonable values are up to 300 and it depends on 

the computational power and the size of text volume. So due to the size of the 

downloaded corpus we set the vector size to 100. 

- We set the window size (the maximum distance between a target word and words 

around it) to 5. This window size is applicable since more distance will yields less 

semantic vectors.  

- We set min_count (the minimum count of words to consider when training the 

model; words with an occurrence less than this count is ignored) to 5. This count 

of words is applicable since the downloaded articles context are written for 

different topics, and this will yield more vocabularies. More count words will yield 

less vocabularies and thus creating poor word vectors quality. 

By applying these steps, a collection of word vectors is created. Figure (5.1) illustrates a 

generated word vector for the word year (سنة), the vector size is 100 and these float values 

represent the coordinates of the adjacent words in this N (N being the size of the word 

vector) dimensional space. 

 



www.manaraa.com

40 
 

 

Figure (5.1): Generated word vector for word year 

 

5.1.4 The experiment procedures. 

In this section we give detail description of our experiment and provide step by step to 

create word vectors, so it can help others to copy our experiments and generate new results 

and used for their future researches. 

1- We download the Arabic Wikipedia XML dump file and converted into multiple 

text files using wiki2text open source tool and works very well with gigabytes of 

XML files. Then we used cat a Linux command line to assembles different text 

files into one file. 

2- After extracting the text file from XML file, we pre-processed the 1.7 GB text file 

using our written Python script and other library. See Appendix (A.1) for the 

source code of pre-processing task. For this task we used the VPS environment, 

since pre-processing large file needs a lot of computer RAM. 

3- After pre-processing, we have 1.3 GB plain Arabic text. We used word2vec tool 

to generate word vectors from the pre-processed text file. See Appendix (A.2) for 

source code that creating word vectors task. For this task we used the VPS 

environment, since creating word vectors from gigabytes text file needs a lot of 

computer RAM. 



www.manaraa.com

41 
 

4- After creating word vectors, we averaging these vectors for each word and build 

the classification model and created the word clusters using Python. See Appendix 

(A.4) for the source code of creating the classification model. For this task we used 

local machine environment to fitting the classification model with training and 

testing data. 

5.2 Experimental Results and Discussion 

This section describes the results of the various experiments that have been conducted. 

We used the Wikimedia database dump of the Arabic Wikipedia as of on May 20, 2017 

which is a collection of written articles in various fields with volume of (1.7GB). After 

Pre-processing (removing none Arabic character and symbols, removing the Arabic 

diacritics, removing the Tatweel or character elongation from the words) we produce a 

plain Arabic text with a volume of (1.3GB). We used VPS computer (the first 

environment) as presented in Section 5.2 to perform the pre-processing tasks. Table (5.2) 

shows the execution time in minutes for pre-processing different volumes of Wikipedia 

dump database. 

Table (5.2): The execution time of pre-processing tasks 

Text Volume Execution Time (Minutes) 

304 Megabytes 0.45098559856414794  

608 Megabytes 0.7984124342600505 

1200 Megabytes 1.7527989347775776 

1700 Megabytes 4.128003748257955 

 

Table (5.2) shows the execution time for pre-processing the downloaded text which take 

around 4 minutes. This execution time interval is considered reasonable and fast, taking 

into consideration the big volume of the downloaded text (1.7GB) and the different 

transformations that are performed on the text. 

Also, we used VPS environment to create word vectors that are used to create the 

classification features and used in the classification model. Table (5.3) shows the 



www.manaraa.com

42 
 

execution time for creating word vectors, as time increases along with increasing the text 

size. Figure (5.2) is and experiment snapshot that depicts logs information resulted from 

creating word vectors. 

Table (5.3): The execution time of creating different word vectors 

Text Volume Execution Time (Minutes) 

259 Megabytes 2.5690334320068358 

512 Megabytes 5.317067114512126 

919 Megabytes 9.832969482739767 

1300 Megabytes 12.113544952869415 

 

 

Figure (5.2): Experiment logs information of creating word vectors results 

Figure (5.2) shows the logs of two process: process 1; log information of creating word 

phrases using word2phrase package. Process 2; log information of creating the word 

vectors. These logs contain the total number of words in the text file before and after 

processing. Also this Figure shows the total time for creating these process. 



www.manaraa.com

43 
 

We used the k-folds cross validation to spilt the dataset into k different folds (or subsets). 

To train our dataset we use k-1 subsets and leave the last subset as test data. To calculate 

the accuracy of the classification model, we take the average of the previous subsets 

accuracies. For example, let’s divide the following dataset into 5 subsets (k=5) as it shown 

in Figure (5.3). 

 

 

Figure (5.3): Dataset divided in 5 part 

 

According to k-fold technique, we need to apply the classifier algorithm on k folds where 

we leave one of the parts for testing and use the others for training. See how this looks 

like for k = 5 in Figure (5.4). To calculate the overall classifier accuracy, we calculate the 

accuracy for every fold and takes the average of these folds. 

 

Figure (5.4): 5 k-fold divided dataset 

By using the k-folds we avoid our model not being under fitting (i.e., the model does not 

perform poorly on the training data) and it is also not being over fitting (i.e., the model 

performs well on both; the training data and the testing data). To determine whether a 



www.manaraa.com

44 
 

classification model is under fitting or overfitting the training data we look at the 

predication error on the training data as well as on the testing data.  

We choose the class labels based on the varying content of Wikipedia articles and based 

on the generated word phrases like:  جزيئات_الماء (water molecules), العناصر_الكيميائية 

(chemical elements), المسطحات_ المائية (Waterbodies), المركبات_ الكيميائية (chemical 

compounds) which are generated during creating word vectors, so we have chosen the 

following 16 labels : عنصر كيميائي (chemical element), مركب كيميائي (chemical compound), 

 astronomical) مصطلح فلكي ,(geological term) مصطلح جيولوجي ,(waterbodies) مسطحات مائية

term), دولة آسيوية (Asian country), دولة أفريقية (African country), دولة أوروبية (Europe country), 

الجنوبية أمريكا دول  (south America country),  الشمالية أمريكا دول  (north America country), طلح مص

اقتصاديمصطلح  ,(political term) مصطلح سياسي ,(medical term) طبي  (economical term), 

 .(physical terms) مصطلحات فزيائية ,(arts terms) مصطلحات أدبية ,(legal terms) مصطلحات قانونية

We have executed our experiments with varying volumes of word vectors. The k-folds 

values and different sets of training labelled data are used in order to create high accurate 

classification models that are able to classify new words into their categories. Also, we 

used unlabelled data to check the effectiveness of our approach and prove that the 

generated classification model is able to predict unseen examples. 

We experiment with vector sizes of 251MB, 414MB, 643MB and 781MB. Also we 

experiment with different volumes of labelled training data and different k-folds values as 

well as we experiment once with unlabelled testing data (never seen before). All these 

results are summarized in Table (5.4) 

 

 

 

 

 



www.manaraa.com

45 
 

Table (5.4): Summary of all experiments 

 
 

 

251MB 

 

 

414MB 

 

 

643MB 

 

 

781MB 

 

Evaluation Metrics     

 

3 K-Fold 

splitting  

 

100-word 
training labelled 

data 

 

Accuracy 

 

0.69 

 

0.73 

 

0.85 

 

0.88 

Precision 0.79 0.77 0.90 0.92 

Recall 0.70 0.73 0.85 0.88 

F-measure 0.67 0.71 0.84 0.88 

 

7 K-Fold 

splitting 

 
300-word 
training labelled 

data 

 

Accuracy 

 

0.62 

 

0.66 

 

0.66 

 

0.71 

Precision 0.65 0.71 0.71 0.71 

Recall 0.62 0.67 0.67 0.71 

F-measure 0.60 0.64 0.64 0.69 

 

7 K-Fold 

splitting 

 
600-word 
training labelled 

data 

 

Accuracy 

 

0.73 

 

0.79 

 

0.82 

 

0.85 

Precision 0.76 0.78 0.84 0.87 

Recall 0.73 0.79 0.82 0.86 

F-measure 0.71 0.76 0.81 0.85 

 

10 K-

Fold 

splitting 

 
1000-word 
training labelled 

data 

 

Accuracy 

 

0.64 

 

0.71 

 

0.72 

 

0.76 

Precision 0.66 0.70 0.72 0.78 

Recall 0.66 0.71 0.72 0.76 

F-measure 0.62 0.69 0.70 0.75 

 

15-word testing unlabeled 

data 

 

 

Accuracy 

 

0.73 

 

0.93 

 

0.93 

 

1.0 

Precision 0.66 0.93 0.93 1.0 

Recall 0.77 0.95 0.95 1.0 

F-measure 0.68 0.95 0.95 1.0 

 

Table (5.4) shows the accuracy, precision, recall and f-measure results of the generated 

classification model with using different vector sizes, different volumes of training data 

and different k-folds values. 

Also, several observations can be made based on these measure values. First, the high 

recall and precision indicates that the models are trained well and are not under fitted. A 

model with high recall and low precision returns many results, but most of them are 

Vectors Sizes 

Training Data Volumes 



www.manaraa.com

46 
 

incorrected when compared to the training labels. Also, a model with high precision and 

low recall return few results, which are correct when compared to the training data. 

Second, the vector size (781MB) gives around 88% scores with 100 and 600 training 

labelled data, while it gives around 75% scores with 300 and 1000 training labelled data. 

This happens due to the insufficient vocabularies in that vector leading to less 

classification features that are used in the classification models. Third, the increase in both 

the model scores and the word vectors indicate that the bigger vector size (large and 

balanced data set) the better classification results. Last observation, the vector sizes 414 

MB, 643MB and 781MB gives 95% and 100% scores for testing new data (unlabeled 

data). This means that the classification models are not over fitted. Also, this high score 

indicates the high-quality of the word vectors that are created.  

We evaluate the last experiment (15-word testing unlabeled data) scores manually. The 

15 words are:  المشتري _ الزهرة_ تايوان _ سلطنة عمان _النمسا _ سانت مارتن _ سينت مارتن _راديوم

مرمرةوم _ القولون _ مناعة_ تجاذب _ الذبذبة_ بحر العرب _بحر _كوري . For larger testing data 

(unlabeled data), it would be difficult to calculate the scores manually. So, for that purpose 

and since our experiments are multi-class classification, the confusion matrix is an 

excellent method to illustrate the results of multi-class problem. Figure (5.5) shows the 

printed confusion matrix for 15-word testing unlabeled data. 

 

Figure (5.5): Confusion matrix for 15-word testing unlabeled data 



www.manaraa.com

47 
 

As we see from Figure (5.5), the elements of the diagonal are the number of correct 

predictions and the elements off the diagonal are incorrect predictions. 

In summary of these results; creating high quality word vectors requires very large plain 

text and balanced text, so it can be used as features with classification tasks. The ascending 

scores of our experiments assures the effectiveness of our approach to create high quality 

word clusters.  

 

5.4 Summary 

We have presented in details the setup aspects of the performed experiments in order to 

create high quality word clusters. To perform our experiments, we have used the 

Wikimedia database dump of Arabic Wikipedia articles as of May 20, 2017. The dataset 

volume is about 1.7GB and has become 1.3GB after pre-processing. We have divided the 

dataset into multiple sets to create word vectors with different vocabulary sizes. We 

performed the experiments using two different environments: a cloud based and remote 

virtual private server environment to create word vectors and pre-processing, and a local 

machine environment to generate word clusters and evaluate the classification models. 

We have implemented the different parts of our model using Python (version 2.7). There 

are four main parts based on the approach as presented in Chapter 4: data pre-processing, 

creating word vectors, generating the classification model and creating word clusters, and 

word clusters evaluation. 

After fitting the classification model with training data and test data, a sixteen word 

clusters have been created. The average evaluation scores of the classification model are 

promising (above 85%) and indicates that the classification models are not being over 

fitting or under fitting with training and test data. 

  



www.manaraa.com

48 
 

Chapter 6  

Conclusion and Future Work 
 

6.1 Conclusion 

We have built an approach to create word clusters from large Arabic plain text based on 

similarity among words which reflects the semantic relationship among them. These 

clusters have high intra-cluster similarity (words within a cluster are similar) and low 

inter-cluster similarity (words from different clusters are dissimilar). 

There are four main parts of the approach as presented in Chapter 4: Part 1 is the data pre-

processing which includes collecting the dataset and performing pre-processing on it. 

Part2 involves creating word vectors using word2vec model and other method. Part 3 

involves generating the classification model and creating word clusters using Pipeline 

method and Extra tree classifier. Part 4 involves evaluating the generated word clusters 

using the most common metrics such as precision, recall, f-measure as well as confusion 

matrix. 

We have implemented these parts of the approach using Python (version 2.7) and based 

on this implementation, we have performed a set of experiments. The experiments results 

show the effectiveness of our approach to create word clusters from a large plain Arabic 

text. Also, the classification results show that the extracted features from the word vectors 

have empowered the classification models and achieved accuracy, precision, recall and F-

measure with higher than 85%. In addition to that, the classification model results indicate 

that the classification model is not being under fitting (i.e., the model does not perform 

poorly on the training data) and it is also not being over fitting (i.e., the model performs 

well on both; the training data and the testing data). 

Finally, the proposed approach can be used efficiently and accurately to create word 

clusters from large Arabic plain text in any domain. It is suitable for various natural 

language processing tasks such as, part of speech tagging, online dictionaries, named 

entity recognition. In addition to that, the generated word vectors can be updated with new 



www.manaraa.com

49 
 

vocabularies without the need of recreating these word vectors again. This helps to provide 

NLP applications and tasks with in-demand semantic data.  

6.2 Future Works 

Our work can be extended to include creating word vectors from trigram and n-grams 

words from large plain text. It can be applied for sentence level or document level using 

another neural network tool called doc2vec. Also, the generated word vectors can be used 

for other Arabic NLP application and tasks such as, name entity recognition, and query 

search expansion. These applications and uses need to be checked experimentally based 

on suitable models and approaches. 

For fast processing, we can extend our work to use a parallel processing environment 

based on, e.g., Map/Reduce parallel programming model to speed up the process of 

creating word vectors specially with larger volumes of data (big data). We can use Hadoop 

(a Map/Reduce an open-source framework) to pre-process large dataset and create large 

word vectors.      

The results of our approach are encouraging and show that high quality word vectors 

created with high classifier performance and thus creating high quality word clusters. 

Therefore, there is a need to investigate further techniques for creating word clusters from 

large unstructured text with less computational resources and apply them to interesting 

applications. 

 

 

 

 

  



www.manaraa.com

50 
 

The Reference List 

 

Abu Tair, M. M., & Baraka, R. S. (2013). Design and evaluation of a parallel classifier for large-
scale Arabic text. International Journal of Computer Applications, 75(3).  

Akata, Z., Reed, S., Walter, D., Lee, H., & Schiele, B. (2015). Evaluation of output embeddings for 
fine-grained image classification. Paper presented at the Computer Vision and Pattern 
Recognition (CVPR), 2015 IEEE Conference on. 

Al-Anzi, F. S., & AbuZeina, D. (2017). Toward an enhanced Arabic text classification using cosine 
similarity and Latent Semantic Indexing. Journal of King Saud University-Computer and 
Information Sciences, 29(2), 189-195.  

Al-Khalifa, H., & Al-Wabil, A. (2007). The Arabic language and the semantic web: Challenges and 
opportunities. Paper presented at the The 1st int. symposium on computer and Arabic 
language. 

Al-Shalabi, R., & Obeidat, R. (2008). Improving KNN Arabic text classification with n-grams 
based document indexing. Paper presented at the Proceedings of the Sixth 
International Conference on Informatics and Systems, Cairo, Egypt. 

Al-Zoghby, A. M., Ahmed, A. S. E., & Hamza, T. T. (2013). Arabic Semantic Web Applications–A 
Survey. Journal of Emerging Technologies in Web Intelligence, 5(1), 52-69.  

Al Tarouti, F., & Kalita, J. (2016). Enhancing automatic wordnet construction using word 
embeddings. Paper presented at the Proceedings of the Workshop on Multilingual and 
Cross-lingual Methods in NLP. 

Al Zamil, M. G., & Al-Radaideh, Q. (2014). Automatic extraction of ontological relations from 
Arabic text. Journal of King Saud University-Computer and Information Sciences, 26(4), 
462-472.  

Alghamdi, R., & Alfalqi, K. (2015). A survey of topic modeling in text mining. Int. J. Adv. Comput. 
Sci. Appl.(IJACSA), 6(1).  

Alkoffash, M. S. (2012). Automatic Arabic Text Clustering using K-means and K-mediods. 
International Journal of Computer Applications, 51(2).  

Alotaibi, S., & Anderson, C. (2017). Word Clustering as a Feature for Arabic Sentiment 
Classification. IJ Education and Management Engineering, 1-13.  

Amrouche, A., Falek, L., & Teffahi, H. (2017). Design and Implementation of a Diacritic Arabic 
Text-To-Speech System. International Arab Journal of Information Technology (IAJIT), 
14(4).  

Asia Pacific Forum. (2005). Similarities between countries.   Retrieved from 
https://www.eduhk.hk/apfslt/v6_issue2/foreword/foreword4.htm 

Baker, L. D., & McCallum, A. K. (1998). Distributional clustering of words for text classification. 
Paper presented at the Proceedings of the 21st annual international ACM SIGIR 
conference on Research and development in information retrieval. 

Barbara, R. (2000). Latent Semantic Indexing: An overview. INFOSYS, 240.  
Baroni, M., Dinu, G., & Kruszewski, G. (2014). Don't count, predict! A systematic comparison of 

context-counting vs. context-predicting semantic vectors. Paper presented at the ACL 
(1). 

Bloehdorn, S., Cimiano, P., & Hotho, A. (2006). Learning ontologies to improve text clustering 
and classification From data and information analysis to knowledge engineering (pp. 
334-341): Springer. 

https://www.eduhk.hk/apfslt/v6_issue2/foreword/foreword4.htm


www.manaraa.com

51 
 

Chennoufi, A., & Mazroui, A. (2017). Morphological, syntactic and diacritics rules for automatic 
diacritization of Arabic sentences. Journal of King Saud University-Computer and 
Information Sciences, 29(2), 156-163.  

Denkowski, M. (2009). A survey of techniques for unsupervised word sense induction. 
Language & Statistics II Literature Review, 1-18.  

Duwairi, R. M. (2006). Machine learning for Arabic text categorization. Journal of the American 
Society for Information Science and Technology, 57(8), 1005-1010.  

Eldos, T. M. (2003). Arabic text data mining: A root-based hierarchical indexing model. 
International Journal of Modelling and Simulation, 23(3), 158-166.  

Ester, M., Kriegel, H.-P., Sander, J., & Xu, X. (1996). A density-based algorithm for discovering 
clusters in large spatial databases with noise. Paper presented at the Kdd. 

Geurts, P., Ernst, D., & Wehenkel, L. (2006). Extremely randomized trees. Machine Learning, 
63(1), 3-42.  

Heap, B., Bain, M., Wobcke, W., Krzywicki, A., & Schmeidl, S. (2017). Word Vector Enrichment 
of Low Frequency Words in the Bag-of-Words Model for Short Text Multi-class 
Classification Problems. arXiv preprint arXiv:1709.05778.  

Hersh, W., Buckley, C., Leone, T., & Hickam, D. (1994). OHSUMED: an interactive retrieval 
evaluation and new large test collection for research. Paper presented at the SIGIR’94. 

Hotho, A., Staab, S., & Stumme, G. (2003). Ontologies improve text document clustering. Paper 
presented at the Data Mining, 2003. ICDM 2003. Third IEEE International Conference 
on. 

Huang, A. (2008). Similarity measures for text document clustering. Paper presented at the 
Proceedings of the sixth new zealand computer science research student conference 
(NZCSRSC2008), Christchurch, New Zealand. 

Istizada. (2017). complete-list-of-arabic-speaking-countries-2014.   Retrieved from 
http://istizada.com/complete-list-of-arabic-speaking-countries-2014 

Kohavi, R., & Provost, F. (1998). Glossary of terms. Machine Learning, 30(2-3), 271-274.  
Lilleberg, J., Zhu, Y., & Zhang, Y. (2015). Support vector machines and word2vec for text 

classification with semantic features. Paper presented at the Cognitive Informatics & 
Cognitive Computing (ICCI* CC), 2015 IEEE 14th International Conference on. 

Ma, L., & Zhang, Y. (2015). Using Word2Vec to process big text data. Paper presented at the Big 
Data (Big Data), 2015 IEEE International Conference on. 

Maas, A. L., Daly, R. E., Pham, P. T., Huang, D., Ng, A. Y., & Potts, C. (2011). Learning word 
vectors for sentiment analysis. Paper presented at the Proceedings of the 49th Annual 
Meeting of the Association for Computational Linguistics: Human Language 
Technologies-Volume 1. 

Mikolov, T., & Dean, J. (2013). Distributed representations of words and phrases and their 
compositionality. Advances in neural information processing systems.  

Moh'd A Mesleh, A. (2007). Chi square feature extraction based svms arabic language text 
categorization system. Journal of Computer Science, 3(6), 430-435.  

Nabil, M., Atiya, A. F., & Aly, M. (2015). New Approaches for Extracting Arabic Keyphrases. 
Paper presented at the Arabic Computational Linguistics (ACLing), 2015 First 
International Conference on. 

Nadbordrozd. (2016). Text Classification With Word2Vec.  
Pennington, J., Socher, R., & Manning, C. D. (2014). Glove: Global vectors for word 

representation. Paper presented at the EMNLP. 

http://istizada.com/complete-list-of-arabic-speaking-countries-2014


www.manaraa.com

52 
 

Rong, X. (2014). word2vec parameter learning explained. arXiv preprint arXiv:1411.2738.  
Rosario, B. (2000). Latent semantic indexing: An overview. Techn. rep. INFOSYS, 240, 1-16.  
slideplayer. (2018). Example of Partitional Clustering Retrieved from 

http://slideplayer.com/slide/5946179/20/images/7/Partitional+Clustering.jpg 
Wei et al. (2015). A semantic approach for text clustering using WordNet and lexical chains. 

Expert Systems with Applications, 42(4), 2264-2275.  
Wikipedia. (2017). Wikipedia:Policies and guidelines.   Retrieved from 

https://en.wikipedia.org/wiki/Wikipedia:Policies_and_guidelines 
Wu, Y.-C. (2014). A top-down information theoretic word clustering algorithm for phrase 

recognition. Information Sciences, 275, 213-225.  
Xu, R., & Wunsch, D. (2005). Survey of clustering algorithms. IEEE Transactions on neural 

networks, 16(3), 645-678.  
Zerrouki, T. (2010). Pyarabic, An Arabic language library for Python.   Retrieved from 

https://pypi.python.org/pypi/pyarabic/ 2010 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

http://slideplayer.com/slide/5946179/20/images/7/Partitional+Clustering.jpg
https://en.wikipedia.org/wiki/Wikipedia:Policies_and_guidelines
https://pypi.python.org/pypi/pyarabic/


www.manaraa.com

53 
 

Appendix A: The Source Code 

 

In this appendix we present the source code of the various parts of our approach. 

Figure (A.1): The pre-processing Source Code 

 

# -*- coding: utf-8 -*- 

import re 

import codecs 

import pyarabic.araby as araby 

import timeit 

 

def read_file(): 

    f = codecs.open("3g.txt", "r", encoding='utf8') 

    data = f.read() 

    f.close() 

    return data 

 

def write_file(data): 

    filew = codecs.open('3g-p.txt', 'w', encoding='utf8') 

    filew.write(data) 

 

    filew.close() 

 

def normalize_data(data): 

    regex = ur'[\u0621-\u063A\u0641-\u064A]+' 

    return " ".join(re.findall(regex, data)) 

 

def strip_tatweel(text): 

    reduced = araby.strip_tatweel(text) 

    return reduced 

 

 

def strip_tashkeel(text): 

    reduced = araby.strip_tashkeel(text) 

    return reduced 

 

start_time = timeit.default_timer() 

data = read_file() 

remove_tashkeel = strip_tashkeel(data) 

remove_tatweel = strip_tatweel(remove_tashkeel) 

normalized = normalize_data(remove_tatweel) 

write_file(normalized) 

elapsed = timeit.default_timer() - start_time 

InMinutes = elapsed / 60 

print ("The Total: Execution Time in Minutes is: ", InMinutes) 

 



www.manaraa.com

54 
 

 

Figure (A.2): Creating word vectors 

 

 

 

 

 

 

 

 

 

 

 

 

from gensim.models.keyedvectors import KeyedVectors 
import word2vec 
import timeit 
start_time = timeit.default_timer() 

word2vec.word2phrase('3g-p.txt', '3g-phrases.txt', verbose=True) 

word2vec.word2vec('3g-phrases.txt', '3g.bin', size=100, verbose=True) 

elapsed = timeit.default_timer() - start_time 

InMinutes = elapsed / 60 

word2vec.word2clusters('3g-p.txt', '3g-clusters.txt', 100, verbose=True) 

model = KeyedVectors.load_word2vec_format('3g.bin', binary=True) 

model.save_word2vec_format('3g-vectors.txt', binary=False) 

print ("The Total Execution Time in Minutes is: ", InMinutes) 



www.manaraa.com

55 
 

Figure (A.3): Creating the classification features 

 

 

 

# -*- coding: utf-8 -*- 
import numpy as np 
from sklearn.pipeline import Pipeline 
from sklearn.ensemble import ExtraTreesClassifier 
import data 
from sklearn.metrics import confusion_matrix, accuracy_score, classification_report 
import pandas as pd 
import matplotlib.pyplot as plt 
from sklearn.model_selection import KFold 
 

# Store the word vectors into dictionary 

with open("304m2-vectors.txt", "rb") as lines: 

    w2v = {line.split()[0]: np.array(map(float, line.split()[1:])) 

           for line in lines} 

 

# build the features, by averaging the word vectors for all vectors in a 

text 

class MeanEmbeddingVectorizer(object): 

    def __init__(self, word2vec): 

        self.word2vec = word2vec 

        self.dim = len(word2vec.itervalues().next()) 

    def fit(self, X, y): 

        return self 

    def transform(self, X): 

        return np.array([ 

            np.mean([self.word2vec[w] for w in words if w in 

self.word2vec] 

                    or [np.zeros(self.dim)], axis=0) 

            for words in X 

        ]) 



www.manaraa.com

56 
 

Figure (A.4): Creating the classification model and word clusters 

# classify the vectors using Extra Trees classifier 

model = Pipeline([ 

    ("word2vec vectorizer", MeanEmbeddingVectorizer(w2v)), 

    ("extra trees", ExtraTreesClassifier(n_estimators=200))]) 

xx = data.get_data('train_100.txt') 

yy = data.label_data('label_100.txt') 

X = np.array(xx) 

y = np.array([yy]).reshape(100) 

kf = KFold(n_splits=3, shuffle=True, random_state=42) 

kf.get_n_splits(X) 

for train_index, test_index in kf.split(X): 

    data_train, data_test = X[train_index], X[test_index] 

    target_train, target_test = y[train_index], y[test_index] 

 

model.fit(data_train, target_train) 

prediction = model.predict(data_test) 

print(pd.DataFrame({'words': data_test, 'prediction': prediction})) 

expected = target_test 

predicted = model.predict(data_test) 

cm = confusion_matrix(target_test, prediction) 

plt.matshow(cm) 

plt.title('Confusion matrix') 

plt.colorbar() 

plt.ylabel('True label') 

plt.xlabel('Predicted label') 

plt.show() 

print 'The Model Accuracy: ', accuracy_score(target_test, predicted) 

target_names = ['class 1', 'class 2', 'class 3', 'class 4', 'class 5', 

                'class 6', 'class 7', 'class 8', 'class 9', 'class 10'] 

print '\nClasification report:\n', classification_report(target_test, prediction, 

target_names=target_names) 


